Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J. pediatr. (Rio J.) ; 96(1): 60-65, Jan.-Feb. 2020. graf
Article in English | LILACS | ID: biblio-1090998

ABSTRACT

Abstract Objective Permanent hypoparathyroidism can be presented as part of genetic disorders such as Sanjad-Sakati syndrome (also known as hypoparathyroidism—intellectual disability-dysmorphism), which is a rare autosomal recessive disorder. Our aim was to confirm the diagnosis of a group of patients with dysmorphism, poor growth, and hypoparathyroidism clinically labeled as Sanjad-Sakati syndrome and to identify for the first time the genetic variations on Iranian patients with the same ethnic origin. Methods In this study, 29 cases from 23 unrelated Arab kindreds with permanent hypoparathyroidism and dysmorphism indicating Sanjad-Sakati syndrome were enrolled for 10 years in the southwest of Iran. The mutational analysis by direct sequencing of the tubulin folding cofactor E gene was performed for the patients and their families, as well as their fetuses using genomic DNA. Results Twenty-eight out of 29 cases had parental consanguinity. Twenty-seven cases presented with hypocalcemia seizure and two were referred because of poor weight gain and were found to have asymptomatic hypocalcemia. The dysmorphic features, hypocalcemia in the setting of low to normal parathyroid hormone levels and high phosphorus led to the diagnosis of these cases. Sequencing analysis of the tubulin folding cofactor E gene revealed a homozygous 12-bp deletion (c.155-166del) for all patients. Following that, prenatal diagnosis was performed for eight families, and two fetuses with a homozygous 12-bp deletion were identified. Conclusion These results make it much easier and faster to diagnose this syndrome from other similar dysmorphisms and also help to detect carriers, as well as prenatal diagnosis of Sanjad-Sakati syndrome in high-risk families in this population.


Resumo Objetivo O hipoparatireoidismo permanente pode estar presente como parte das doenças genéticas como na síndrome de Sanjad-Sakati (também chamada de síndrome de hipoparatireoidismo, retardo e dismorfismo), que é um distúrbio autossômico recessivo raro. Nosso objetivo foi confirmar o diagnóstico de um grupo de pacientes com dismorfismo, crescimento deficiente e hipoparatireoidismo clinicamente identificado como síndrome de Sanjad-Sakati e identificar as variações genéticas, pela primeira vez, em pacientes iranianos com a mesma origem étnica. Métodos Neste estudo, foram inscritos 29 casos de 23 famílias árabes sem parentesco com hipoparatireoidismo e dismorfismo indicando síndrome de Sanjad-Sakati, durante 10 anos no sudoeste do Irã. Foi feita a análise mutacional por sequenciamento direto do gene do cofator E de dobramento da tubulina dos pacientes e de suas famílias e também de seus fetos com o DNA genômico. Resultados Apresentaram consanguinidade parental 28 dos 29 casos. Desses, 27 casos apresentaram convulsão por hipocalcemia e dois foram encaminhados devido ao baixo ganho de peso, considerando diagnóstico de hipocalcemia assintomática. As características dismórficas, hipocalcemia na configuração de níveis de hormônio da paratireoide baixos a normais e alto nível de fósforo levaram ao diagnóstico dos casos. A análise de sequenciamento do gene do cofator E de dobramento da tubulina revelou deleção homozigótica de 12 pares de base (pb) (c.155-166del) em todos os pacientes. Após isso, foi feito o diagnóstico pré-natal em oito famílias e dois fetos foram identificados com deleção homozigótica de 12 pb. Conclusão Esses resultados tornam o diagnóstico dessa síndrome muito mais fácil e rápido do que outros dismorfismos semelhantes e também ajudam a detectar portadores, bem como o diagnóstico pré-natal da síndrome de Sanjad-Sakati em famílias de alto risco nessa população.


Subject(s)
Humans , Osteochondrodysplasias , Seizures , Abnormalities, Multiple , Growth Disorders , Hypoparathyroidism , Intellectual Disability , Tubulin , Molecular Chaperones , Iran
2.
Indian J Hum Genet ; 2012 Sept; 18(3): 290-293
Article in English | IMSEAR | ID: sea-145849

ABSTRACT

Background: Phenylketonuria (PKU) is an inborn error of amino acid metabolism that results from a deficiency of phenylalanine hydroxylase (PAH). According to PAH database, exons 6 and 7 and their flanking introns of PAH gene contain the greatest number of mutant alleles. Therefore, as a preliminary study, nucleotide sequence analysis of exons 6 and 7 of the PAH gene has been performed in 25 PKU patients whose ancestors lived in Kermanshah province of Iran. To date, there has been no mutation data describing the genotypes of the PKU disease in this Kurdish ethnic region background. Materials and Methods: Twenty-five patients (aged between 2 and 23 years) participated in this study. The DNA fragments containing two exons of the PAH gene [6 and 7] and their exon-flanking intronic sequences were amplified and sequenced. Results: The total of detected mutations were R261X (8%), R176X (4%), R243Q (4%), R243X (2%) and R261Q (2%), as they accounted for 20% of all mutant alleles in this study. The identified polymorphisms are: IVS5 -54 G > A (22%), Q232Q (8%) and V245V (4%). All of the detected mutations in this study are related to CpG dinucleotides in the PAH gene sequence. Conclusion: The frequency of R261X, the most common mutation in our study, in Iranian population is <5%. Furthermore, there is no report of detection of R176X and R243Q in Isfahan and Azeri Turkish populations. These findings confirm the common Mediterranean mutations in this local population, although with more or lower frequencies than those reported in other related studies in Iran. Therefore, it may be necessary to study the PAH gene mutations in other provinces of Iran separately.

3.
Indian J Hum Genet ; 2012 May; 18(2): 222-225
Article in English | IMSEAR | ID: sea-143274

ABSTRACT

Background: Dopaminergenic system plays an essential role in the plasticity of the human brain. The dopamine transporter gene (SLC6A3) mediates active reuptake of dopamine from synapsis, terminates dopamine signals, and therefore, is implicated in a number of dopamine-related disorders like psychosis. Variations in the form of single nucleotide polymorphisms in the core promoter of the SLC6A3 gene are reported to be involved in the pathogenesis of schizophrenia. In this study, we also attempted to establish the possible role of the polymorphism G-660C in the SLC6A3 gene promoter in schizophrenia in a case-control study. Materials and Methods: The allele and genotype frequency were analyzed in an Iranian cohort of 200 unrelated patients and 200 controls using polymerase chain reaction and restriction fragment length polymorphism. Results: The genotype frequency for case and control groups was GG 100%, GC 0%, CC 0%, and GG 100%, GC 0%, CC 0%, respectively. The C allele was failed in both groups. Conclusion: Our data suggest clearly that there is no association between the -660G/C polymorphism and outcome of schizophrenia in the Iranian population.


Subject(s)
Adult , Cohort Studies , Dopamine Plasma Membrane Transport Proteins/genetics , Female , Humans , Iran , Male , Polymorphism, Genetic/genetics , Population Groups , Promoter Regions, Genetic , Schizophrenia/genetics
4.
Indian J Hum Genet ; 2009 Jan; 15(1): 9-12
Article in English | IMSEAR | ID: sea-138863

ABSTRACT

BACKGROUND: The common GJB2 gene mutation (35delG) has been previously reported from Iranian patients that were affected with nonsyndromic autosomal recessive deafness. We, therefore, for the first time, investigated the prevalence and frequency of the GJB2 gene mutation in the Iranian deaf population with Arabian origins. MATERIALS AND METHODs: We amplified and sequenced the entire coding sequence of the GJB2 gene from 61 deaf patients and 26 control subjects. RESULT: None of the analyzed samples revealed deafness-associated mutation. CONCLUSION: This finding differs from several reports from Iran as we have focused on the GJB2 gene that possesses various mutations as the cause of congenital recessive deafness.


Subject(s)
Arabs/ethnology , Arabs/genetics , Connexins/genetics , DNA/isolation & purification , Ethnicity/ethnology , Ethnicity/genetics , Gene Deletion , Hearing Loss, Sensorineural/epidemiology , Hearing Loss, Sensorineural/genetics , Humans , Iran/epidemiology , Iran/ethnology , Mutation/genetics , Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL